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1O
SUMMARY

This report describes an experiment of reinforced concrete beams under dynamic
loadings. Specially designed scale beams were vibrated with sinusoidal and random
inputs to the foundations. These beams were 1.5" x 3.5" x 25" in size. The
coarse aggregates - fine aggregates and the reinforcing steel were carefully scaled
in order to simulate an ordinary reinforced concrete structure. Load-cycle curves
for forty seven beams under sinusoidal tests and twenty one beams under random
tests were measured. A few light weight, lightly reinforced beams cut from
commercial roof slabs were also fested. A literature survey of the state-of -the-art
of reinforced concrete and its fotigue properties was also included. Autno®




TABLE OF CONTENTS

SUMMARY

TABLE OF CONTENTS
LIST OF TABLES

LIST OF FIGURES
LIST OF SYMBOLS

1.0 INTRODUCTION

2.0 IECHNICAL DiSCUSSIOIN
3.0 TEST SPECIMENS

4.0 TEST METHODS

5.0 CALCULATION OF STRESSES
6.0 INSTRUMENTATION

7.0 RESULTS

8.0 CONCLUSIONS

9.0 COMMENTS
BIBLIOGRAPHY

APPENDIX A

APPENDIX B

APPENDIX C

Page No.

(g%

11
20
21

31
32

60
69

76



Number
Table 1

Table 2

Table 3

Table 4

Table 5

Table 6

Table 7

Table 8

LIST OF TABLES
Title

Required Relative Acceleration (in g peak) for
Various Percentages of Loads and Excitation
Frequencies.

Calculations of Response Power Spectral Density
SW](U]) and ratio of gpeok/ Gulf for various

Random Inputs.

Static Tests of Group (1) Specimens (Commercially
Fabricated Roof Slabs).

Dynamic Tests of Group (2) Specimens, with
Sinusoidal Iput to the Shaker.

Static Tests of Group (2) Specimens (Scale
Reinforced Corcrete Beams).

Dynamic Tests of Group (2) Specimens, with
Sinusoidal Input to the Shakers.

Dynamic Tests of Group (2) Specimens with
Random Input to the Shakers.

Test Data Sheet Evaluated from a Typical Test
Record.

Page No.
14

18

22

23

24

25

27

28



Number

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

—

10

11

12

13.

14

LIST OF FIGURES
Title

S=N Curve of Plain Concrete under Zero-to-Maximum

Slow Repeated Loads.

S-N Curve of Reinforced Concrete Subjected to
Zero-to-Maximum Slow Repeated Loads.

Simply Supported Concrete Beam under Static
Test. Test Configuration 1.

Simply Supported Concrete Beam under Static
Test. Test Configuration 2.

Concrete Beam Showing Supports in Detail and
Typical Failure Mode of Test Beam.

Equipment used in Dynamic Testing of a Concrete
Beam.

Dynamic Testing of a Concrete Beam Mounted on a
MB C-25 HH Vibrator.

Load-Elongation Curves of Commercial 12-1/2
Gage Wires. (Diameter 0.10 inch)

Run No. 34. Portion of a Typical Record of a
Group (1) Specimen under Dynamic Sinusoidal
Test.

Run No. 38. Portion of a Typical Record of a
Group (1) Specimen under Dynamic Sinusoidal
Test.

Run No. 39. A Typical Complete Record of a
Group (1) Specimen under Dynamic Sinusoidal Test
of very Short Duration.

Beam No. 16. Portion of a Typical Record of a
Group (2) Specimen under Dynamic Sinusoidal
Test.

Beam No. 84. Portion of a Typical Record of a
Group (2) Specimen under Dynamic Random Test;
Fast Recording.

Beam No. 65. Portion of a Typical Record of a
Group (2) Specimen under Dynamic Random Test;
Fast Recording.

Page No.

34

35

36

37

38

39

40

4]

42

43

44

46

47



Number

Figure 15

Figure 16

Figure 17
Figure 18
Figure 19

Figure 20

Figure 21

Figure 22

Figure 23

Figures
24 and 25

Figure 26

Figure BI1

Figure B2

LIST OF FIGURES (Continued)
Title

Beam No. 72. Portion of a Typical Record of a
Group (2) Specimen under Dynamic Random Test;
Slow Recording.

Beam No. 82. Portion of a Typical Record of a Group
(2) Specimen under Dynamic Random Test.

Low Level Scan of Run No. 34 After 5600 Cycles.
Low Level Scan of Run No. 34 After 24,000 Cycles.

Typical Input and Response Power Speciral Densities of
a Test Specimen under Random Vibration Test (Beam

No. 84, 4 g rms Input to Shakers).

S=N Curve of Lightly Reinforced, Light Weight
Concrete Beams, 1" x 3.25" x 23.5", under
Dynamic Sinusoidal Loads.

S-N Curve of Scale Reinforced Concrete Beam,
1.5" x 3.5" x 23.5", under Dynamic Sinusoidal
Loads.

Fatigue Properties of Scale Reinforced Concrete
Beams, 1.5" x 3.5" x 23.5", under Random Excitation.

Drops of Resonance Frequency and the Dynamic
Magnification Factor, Q, of a Typical beam
under Random Vibration in a Concrete Fatigue
Test. (Beam No. 84)

Variation of Dynamié Magnification Factor, Q, of
Reinforced Concrete Subjected to Random Vibration.

Synopsis of the Variation of the Dynamic Magnifi-~
cation Factor, Q, of Reinforced Concrete under

Random Vibration from Figures 23, 24, and 25 .

Normalized Relative Mode Shape W(x, t)/W(x,t) .
with Loss Factor n = 0.125. md

Absolute Deflection Y(x, ) at Mid Span of a Simply
Supported Beam (X/L = 0.5) with Moving Supports
and Loss Factor n .

vi

Page No.

48

49

50
51
52

53

54

55

56

57

58
59

74

75




«Q

LIST OF SYMBOLS

height of @ W= channel

cross=sectional area

distance from neutral axis to outermost fiber of a beam
Young's modulus of elasticity

frequency, cps

generalized force

acceleration,unit in g

gravitational acceleration, 386 in/sec?

as defined in page 13

dynamic magnification factor

= \/—.—]—'

area moment of inertia

spring constant

length of beam between supports
mass

total mass of beam

bending moment

generalized mass

subscript for modal number

total cycles of vibration

static failing load

dynamic magnification factor at resonance
stress

power spectral density, gz/cps

time

foundation deflection

relative beam deflection of beam

vii




v o < X

© T

LIST OF SYMBOLS (Continued)

beamwise coordinate
absolute deflection of beam
density

damping ratic = 1/2 Q
mass per unit length

mode shape

frequency, rad./sec.

loss factor £ 1/Q

viii




1.0

INTRODUCTION

The trend in today's missile and rocket technology is toward bigger and more
powerful vehicles. As a result of this upward trend, any building, either
governmental at the launch site or the static firing pads, or residential, some
distance away from these sites may frequently be subjected to high intensity sound.
Undoubtedly, the safety of such buildings in the areas of intense noise and vibration
is of great interest to many engineers and designers. Some of the most commonly used
construction materials are plain and reinforced concrete. Therefore, a better
knowledge of the dynamic properties of concrete is necessary in the design of
buildings where material fatigue or severe vibration are encountered.

The purpose of the experiment to be described in this report is to obtain useful data
on reinforced concrete subjected to sinusoidal and random dynamic loadings.
Approximately one hundred fabricated reinforced concrete beams were tested.
Fifteen percent of these beams were tested statically to determine their static strength.
The remaining beams were tested to determine their dynamic fatigue characteristics.
The beams were mounted, one at a time, on an electromagnetic shaker and were
vibrated at their supports. Desired stress levels were maintained by monitoring the
input signal to the shaker. The number of vibration cycles was established up to
the moment of the specimen’s failure. The reinforcing wires imbedded in the
concrete beams were also tested by a tensile machine to determine their yield and
ultimate tensile strength, and to give a better understanding of the strength of the
reinforced concrete specimen analytically. Some light weight commercial roof
slabs were also tested.



2.0

TECHNICAL DISCUSSION

Before the experimental work began, a literature survey was conducted to investigate
the properties of concrete, and in particular, reinforced concrete. The survey
covered most work performed in the United States and abroad spanning roughly

the past century. This survey shows:

(1)
(2)

3)

(4)

Random loading of concrete has not been investigated.

Very little work has been performed on concrete subjected to high speed,
dynamic and complete reversal load.

Most tests conducted up to date were of low speed, zero-to-maximum
loading type. The test specimens were tensile reinforced only at one side.
Test daiu weie Ot.t.us;Onu”y exiended for c_omp?efe reversal load situations
beyond the range of experimental supports.

From the existing data on low speed, zero-to-maximum load tests, the
following conclusions can be made:

For plain concrete =~

(i) Ultimate compressive strength of the commonly used concrete is
between 3,500 to 5,000 psi. The ultimate tensile strength is
between 400 ond 500 psi.

(i1) The endurance limit is 50 to 55 percent of the ultimate strength

é s .
at 10" load cycles. However, it is doubtful that plain concrete
possesses an endurance limit at least within 107 load cycles.

(iii) Plain concrete fails in tension for reverse cycle loading.
(iv) The S-N curve for plain concrete, zero-to-maximum load is

shown in Figure 1.

For reinforced concrete -

(i) Reinforced concrete may fail in bondage, shear (diagonal tension),
flexural compression, or fatigue of the reinforcement.

(i) Cracks in reinforced concrete do not always result in rapid failure.

(iii) The endurance limit of reinforced concrete, subjected to zero-to-

maximum loading, can be assumed to be 50 to 55 percent of
the static ultimate sirength. However, some tests indicate that
40 percent should be used for a specimen which is weak in shear.



(iv) The dynamic ultimate strength is found some 30 to 40 percent
higher than the static ultimcte strength, depending on the size and
length of the specimens.

(v) The dynamic magnification factor, Q, (defined as the equivalent of
the inverse of twice the damping ratio) is between 6 and 8.5.

(vi) The rate of repeated loading at a rate much below resonance
frequency appears to have no effect in the fatigue strength. However,
a very slow rate, for example, 10 cycles per minute, seems to
decrease the fatigue strength. A period of rest between repeated
loadings tends to restore strength.

(vii) The S-N curve for reinforced concrete, (one to two percent
reinforcement), with zero-to~maximum load is shown in Figure 2.

(5 Laboratory test data on fatigue properties may serve as a guideline in structural
design. However, adverse corrosive conditions in service could easily reduce
the fatigue strength.

(6) The stress-strain relationship of concrete is not quite linear. The stress~strain
curve may be slightly concave or convex in nature, depending on the specimen's
previous load-cycle history. The dynamic Young's modulus of elasticity is
slightly higher than that for the static case. In the case of very fast rate of
loading, such as in a wave propagaticn experiment, a distinct increase, of
the order of 25 percent, was reported in the magnitude of the dynamic
Young's modulus relative to its static value.

) The elasto-plastic nature and the nonlinear behavior of concrete make resonant
frequency fatigue tests difficult.

This literature survey indicates that there exists a severe lack of work in the field of
dynamic properties of reinforced concrete structure.

From the literature survey and from elementary engineering considerations, we
observe that concrete is made of heterogeneous materials and is visco-elastic in
nature. The static strength is influenced by a number of factors such as, aggregate
sizes, qualities of sand and stones, age, initial concrete mix, curing, corrosion, and
local stress concentration. In the dynamic testing, a concrete specimen is also
greatly affected by cracks, increase of internal damping, variations in Young's
modulus, and change in effective cross-sectional area of the specimen. Undoubtedly,
it is not an easy task to estimate the true dynamic and the true static strength of a
concrete specimen,

On the other hand, if the true values of the static and dynamic strengths were obtained,
they may not be directly applicable to ordinary structural design calculations, where
only simple stress-strain and stress-moment equations are available. Because of this
reasoning, the experiment to be described in this report will minimize the complicated
nature of concrete under both static and dynamic tests in order to use the simple



stress-strain and stress-moment relationships in the estimation of stress, moment, and
life cycles.

The reinforced concrete is, therefore, assumed homogeneous, isotropic, and to have

a Young's modulus of 2.5 x 106 psi (2.0 x 106 psi for plain concrete) regardless of
its previous vibration history. Small cracks usually result in a change of bending
stiffeners E1, which, in turn, accounts for the lowering of the resonance frequency.
Cracks also increase the internal damping, which affect the resonant dynamic
magnification factor, Q, and therefore, the specimen response to excitation. All
stress, strain, resonant frequency, and bending moment calculations are made under
the assumption that the concrete specimen is intact and without cracks. However,
small cracks during a dynamic test do not mean failure. The criterion of failure in
the experiment to be described is arbitrarily defined when one or more of the
following conditions is obtained.

(i) Complete failure of the specimen - specimen breaks into two halves.

(ii) Complete failure of steel reinforcement.

(ili)  Severe damage results in changing of bending stiffeners, E |, and decreasing
of the resonant frequency. A specimen is considered to have failed when the
resonant frequency is reduced to half of its initial value.

(iv) Significant amounts of broken concrete pieces fall from specimen.



3.0 TEST SPECIMENS
Two groups of test specimens were available for this experiment.

Group (1): Forty five 3" x 1" x 25" reinforced concrete beams were cut from
three 24"x 1" x 76" light weight concrete roof slabs, manufactured
by the Alabama Cement Tile Company. The slab manufacturer provided
the following specifications:

Trade name:  Alaslab

Density: 12 Ib/sq.ft.

Allowable load: 60 Ib/sq.ft.

Age: More than 90 days

Reinforcement: 4 x 4 - 14 gage weided mesh fabric at center of slab;

not rusty.

Aggregate: Light weight; high limestone component; maximum size

not greater than 3/8"

Group (2): One hundred and thirty, 3-1/2" x 1-1/2" x 25", 2.52 percent
reinforced concrete scale model beams were manufactured specifically
for this experiment. The following cross-sectional diagram shows the
dimensions of these beams.

]2_]/2" goge ]"X4”

1,4
1/4"-—| l" 1 / Welded Mesh Fabric

T

1 _]/zn 61 . AA ]n 4' 4 :~ A: Concrete
|8 (a0

Cross-Section of a Scale Model Beam




The table below gives a comparison of the scale model beam to a 6 inch
reinforced concrete beam of typical construction:

6" Typical Beam

Scale Model Beam

Scale Factor

Thickness of Beam

Steel Diameter

Steel

% of Reinforcement

Coarse aggregate

Fine Aggregate

Mixed Ratio

Water gal./sack of cement
Slump Test

Distance, Center of Steel to
Concrete Surface

Cylinder Compression Test:
(7 days)
(28 days)

Cement

Curing Conditions

1
&
3/8" (0.38")
Deformed Bar
0.5102.5%
#4 to 1" Screen

# 100 to #4 Screen
1:1:2t01:1-1/2:3
5

3" to 6"

1" to 1-1/2"

2000 - 3000 psi

4000 - 5000 psi

Portland, Type |
In Air

1/4

1-1/2"

12-1/2 gage (0.1")
Smooth, Welded Mesh Fabric
2.52%

#16 to 3/8" Screen
#200 to #16 Screen
1:1:2

5.5

7" to 8"

1/4"

2730 psi ™

4770 psi’*

Portland, Type |
In Air

“Average of 5 cylinders.

$ Actual concrete mixing.

Test performed by Barrow~Agee Laboratories, Inc.
Huntsville.

It should be noted that the material strength used in the model beams was in the
compatible range of that of the ordinary concrete work. The scale model beams
used in the sinusoidal tests were cured two to four months. These beams used in
the random tests were cured six months or longer -




The aggregate composition of the scale model beams is shown in the following
: 1 : 2 mixed reinforced
concrete beam of six inch thickness is also shown for comparison:

histogram. The aggregate composition of a typical 1

—— Scale Model Beam

--— A Typical &"

Beam of 1:1:2 Mix.
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Comparison of Aggregate Compositions of Scale Model
Concrete Beam with a Typical 1
6" Thick Beam

: 1 : 2 Mixed

The calculations of the moment of inertia of the tensile reinforced concrete beam and
its natural frequency are presented in Appendix A.

Approximately 20 percent of the beams belonging to the group (1) category were
found defective due to initial cracks, cutting fault, and mishandling. Seven of the
good specimens were tested statically. The ultimate strength was established at
maximum static failing load. The remainder of the group (1) beams were tested
dynamically with sinusoidal excitation at the excitation frequency adjusted close to,
but less than the resonant frequency of the specimen. A large proportion of these
beams were used to perfect this dynamic testing technique. Only a small number of
these beams yielded meaningful results.



A few of the scale model beams in the group (2) category were discarded due to faults
attributed to the manufacturing process. Eight of the good specimens were chosen
randomly and were tested statically to establish the ultimate static strength. Forty six
beams were tested dynamically with sinusoidal input to the beam supports. Twenty one
beams were tested with random signal input.



4.0

TEST METHODS

In both the static and dynamic tests, a concrete beam specimen was simply supported
at both ends, 23.5 inches apart. The static ultimate bending strength of the concrete
beam was determined by the four point static loading method as shown in Figures

3 and 4. This method employed a five inch W= channel at the middle of the beam
causing the beam to fail, by static loading on the channel, at a section of uniform
bending moment. The modulus of rupture is the calculated stress by the following
familiar formula:

Stress = Mc/I
where M = bending moment at failing load
P .. .

= ZzL-a)
P = static failing load
L = '|engfh of beam between supports
a = height of the WF channel
! = moment of inertia
c = distance from outermost fiber to the neutral axis .

The dynamic strength was determined, on the other hand, by vibrating the beams at
their two end supports. The tests consisted of sinusoidal input and random input to

the electromagnetic shaker (MB model C-25-H) which vibrated the beam supports.
The test setup and the associated equipment used are shown in Figures 5, 6, and 7.

In both static and dynamic tests, the concrete beam specimens were simply supported

at both ends 23-1/2 inches apart. Metal film strain gages (Budd Company type
Cé6-161) were used to measure strain of the beam in the early stages of dynamic testing.
Small pieces of steel shim stock , 0.003 inch thick, were first attached to the concrete
surface by an epoxy cement. The strain gages were then cemented to the shim stock.
However, this method of determining strain was found to be very erratic. The strain
measurement was easily effected by local cracks in neighborhood of the strain gage.

A second method of estimating the desired stress level was developed on the basis

of relative acceleration, Appendix B shows that, for a pinned-pinned beam with
moving supports, the fundamental mode shape, relative to the supports, is essentially
a half sine wave, the same as for fixed supports, with sinusoidally distributed load
applied throughout the entire beam length. The maximum stress at the outermost fiber
of a beam specimen is a function of the applied bending moment. This bending
moment is in turn a function of acceleration, frequency, and mode shape. It is,
therefore, possible to control the desired stress at any point of the beam by carefully




monitoring the input to the shaker. This second method of stress control was used
throughout the rest of the test program.

In the sinusoidal dynamic test, the input to the shaker was adjusted continuously so that
a constant relative displacement at the middle of the beam was maintained until the
beam failed. The excitation frequency was monitored to be about 5 to 10 percent
higher than the beam resonant frequency. The continuous input adjustment was
necessary since the resonant frequency was falling quite rapidly as a result of cracks and
change in bending stiffeners. The peak stress at the maximum strained location - that is,
at the middle of the beam, was computed from the controlled relative acceleration,

and was normalized by the modulus of rupture from the static test, to give the load
ratio. This ratio, together with the excitation frequency and the total time of run,
constituted a point in the load-cycle, (S-N), curve of the concrete specimen.

However, in the random input dynamic test, the control of constant stress at mid-span
of the beam was achieved in a different way. Instead, a broad band, 20-220 cycles,
flat spectrum of input was held constant throughout a test run. The relative
acceleration response of the specimen was analyzed by passing the signal through a
power spectral density analyzer with a narrow (20 cycles) variable center frequency
band pass filter. The spectral density of response and the center frequency of the
filter were recorded sinultaneously on a dual channel visicorder. The peak value of
the acceleration response, Ioeak ’ at the onset of the test was normalized by a factor

This factor is the hypothetical sinusoidal acceleration that would cause a

GUH"
maximum bending moment to be applied to the beam, at the beam's resonance frequency,

exactly large enough to induce failure at the first half of a vibration cycle. This
ratio, gpeak/GuH' the resonant frequencies, and the total time required to fail a

specimen constituted a point, again, in the load-cycle curve. (For further details,
see the following section.) '

The ultimate tensile strength of the reinforcing wire was determined by an axial
pulling machine. The stress-strain curves of several wires are presented in Figure 8.
The ultimate tensile strength is calculated to be 68,000 psi. Figures 9 through 12
show some typical test records of the concrete beams during sinusoidal dynamic tests.
Figures 13 through 16 are a few examples of the beam data under random dynamic
tests. The filter center frequency and the beam's relative response were recorded
simultaneously for the random dynamic tests in order to estimate the value of the
resonant frequency. Figures 17 and 18 are typical response records of a beam, at
low level scans for different numbers of accumulated vibration cycles. Comparison
of these two figures indicates the magnitude change of resonance response of a beam.

10



5.0

CALCULATION OF STRESSES
The calculation of stresses in the group (1) and group (2) test specimens, subjected to
sinusoidal foundation excitation, are the same. Therefore, only those of group (2)

will be presented in greater detail in this section.

Group (2) Specimens, Sinusoidal Test:

From Section 6.0, the average failing static load was 585 Ibs.

. : - P
Maximum bending moment, Mmax = 7 (L -q)
= 2850 in.-lb.
axC
Maximum Stress, o = X
max I
= 5650 psi .

However, since relative acceleration of the beam specimen was being controlled in
the dynamic test, the ultimate strength of the specimen could be expressed in a more
convenient form as the acceleration, Gulf; i.e., the hypothetical acceleration,

which would produce a bending moment of 2850 in. - Ib. at the first half cycle
of vibration.

The theory of vibration of a simply supported beam with a moving foundation is presented
in Appendix B. It is shown in this appendix that the realtive fundamental mode shape
(that is, the absolute mode shape of the beam with respect to the motion of the"

support) is essentially a half-sine wave. Since the excitation frequency of the beam

is either discrete in nature, as in the case of sinusoidal test, or of a limited band width,
as in the random testing case, and since the even mode of vibration is suppressed as
shown in Appendix B, the fundamental mode is the predominant mode in response
vibration, and is the most important mode in the stress analysis. We have, therefore,
the following expression for the relative mode shape:

1




y(x,t) = Y. sin w % - (pinned-pinned beam)
where Y. = maximum deflection of beam
X = spanwise coordinate
L = length of beam
W = excitation frequency = 2 f
t = time .
2
- NN Oyt 2 L x o iwt
inus  ywx, iy = =W '/C SH“.T{TC
dt
= - u2 y(x, ti
|
or Y(le) = = —2- Y(xlf)
w
. . L .
The maximum bending moment occurs at x = 5 and is
2
M = 1 |t
max 2
d x
max
= B (T) y(x’r)mox

= E | (%)2 ¥ (x,) max

2
w
2
— E I ..( f) ]
- YU max \2FL :
4 f2 L2
or Y(X,f)max = TET Mmox (For pinned~pinned end fixity)

12



For a sinusoidal test, the frequency, f, in the above equation is the excitation
frequency. However, in the random test, f isthe resonant frequency of the beam

specimen,

To express the ultimate strength of the concrete beam in terms of acceleration, we
assume that the static stress-strain relationship and that for the dynamic case are the
same for the test specimen, and that y(x,t) max must equal Gulf’ a hypothetical

static equivalent acceleration which would produce the required bending moment,
Mmox,of 2850 in. - Ib. at the end of the first half cycle of vibration. And, for

the given beam specimen of:

L =
E
| =

The value of G
ult

G =

ult

23.5 inches
2.5 x 10 psi
0.426 ind

is calculated as

2 2
4xf x6 (23.5) 2850 x
2.5x 107 x 0.426
-2 2
1.53 x 10 x f g;eok .

At the excitation frequencies of 80, 90, and 100 cps:

G =

ult

For group (1) specimens:

G =

ult

*1 g unit =

98 gpeak at 80 cps

124 gpeck at 90 cps

153 gpeak at 100 cps.

4.24 x 107 x §2

9 peak

386.4 in ./sec.2 Acceleration.

13
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or Gulf = 27.1 gpeak at 80 cps

= 34.4 gpeak at 90 cps
=  42.4 9 seak at 100 cps.

The following table gives the nercent of load (dynamic load/static load) and the
required acceleration for various frequencies for the group (2) specimens under a
sinusoidal dynamic test.

TABLE |

Required Relative Acceleration in (g peak) for Various
Percentages of Loads and Excitation Frequencies.

1.53 x 1072 x §2

(Based on the Equation G, x f gpeak)

It, 100%

% Loa 110 [105 {100 | 95 | 90| 85 | 80 |75 70 65 |60 55 50

115 126 (113 |99 86 75 |& 53 44
110 136 122 [108 |95 |82.5]71.5]60.5 [50.5 |42
105 145 | 130 | 106 {103 |90.5| 79 68 1358 48 40
100 153 138 | 124 | 111 | 98 |86 75 65 |55 46 33

95 153 |145 |131 [ 118 {105 | 93 |82 71 62 |52 44 36

90 166 (145 (138 (124 | 112 | 100 | 88 [77.5|67.5158.5 [49.5 |4] 34
85 157 {137 {130 (117 |105) 94183 |73 |64 35 |47 39 32
80 148 1129 (122 |110 -99 88.5/ 78 | 69 |60 52 |4 |37 |30
75 139 | 121 [115 |103 | 93 | 83 |73.5[64.5|55 48 | 41 |35 |28.5
70 130 { 113|107 | 97 | 87 {77.5|68.5] 60 |52.5|45.5|38.5 |32 |26.5
65 120 | 105 |99.5] 920 | 81| 72| 64 | 55 | 49 42 |36 |30 |25
60 110 |96.5| 92 | 83 [74.5[66.5| 59 |52 |45 39 133 |28 23
55 102 |188.5( 84 | 76 | 68| 61 |54 |47 |41 36 |30 (25 21
50 92.5180.5(76.5| 69 | 62 |55.5| 49 |43 |38.532.5127.5 |23 19

In terms of stress, Gult = 4f]2 L2 cU“/Ecg for pinned-pinned beam, and it can b

shown, see example 2 of Appendix C, that for clamped—clamped beam, Gult =
2,2

fiL oU“/Ecg.

14




The dynamic response of a concrete beam specimen under broad band random excitation

is to be calculated next. The following assumptions are to be noted:

(n Euler's equation for beam is used with negligible effects of rotary inertia
and shear deformation.,

(2 Small deflection theory applied.

(3) Pinned-pinned end flexity .

(4 Input spectrum is flat within a bandwidth of 20 - 220 cycles and zero
elsewhere.

(5) Only the fundamental mode of vibration is important. Higher modes are

neglected.
(6) The dynamic magnification factor H(w) is defined as

V] eesf

where € is the damping ratio,

w = natural frequency.

And at resonance, i.e., w = w

H(w)=Q=§l§’

Q is also a function of damping ratio & only.

(7) Since the resonant frequency is more affected by bending stiffness
variations than variations in damping, the big drop in resonant frequency
is mainly due to the continuous change of bending stiffeners, El, as the

beam specimen cracks under severe vibration,

Considering only the fundamental mode, we have, for the beam response:

:J: Q
W](w) %—— Q = w?

where 9"= the generalized force

K,= the generalized spring constant

15



772 =  the generalized mass

wy; = fundamental natural frequency
w = deflection response at midspan of beam
1 = subscript for fundamental mode.

The generalized force can be expressed as

L
‘3:] = WO/ ¢ (x) dm

1
_w wt . WX X s
= Wo — [ sin I~ d‘l‘l‘-L-, pinned-pinned beam
o

where L = length of beam
¢ =  mode shape of beam
p = mass per unit length of beam
Mo = total mass of beam .

The generalized massm] is —;_- Mo .

Substituting :}; and 772.1 into equation of W] (w) and differentiating twice with

time, we get the response acceleration :

o u2
WOQ-;)-]2

4

T

W @ -

where Wo is the foundation acceleration.
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The mean square response for the first resonant frequency is:

—_— 2 —
.o 2 4 2 .2
or o2 -2
M) e 2
Af T Af
_ 16 2
Swole) = Q@ Sy )
1 n )
~ 2
= 1.6 Q SW (w])
— T 1.6 S (0,)
(Q)2 Wo 1
where Af = frequency band
SW](w]) =  resonant response power spectral density, gz/cps
. . 2
SW (w]) = input power spectral density, g*/cps .

o

The rms acceleration response can be expressed as:
_ n 1
9ms - 2 SW (w]) Q ]

1/2

_ T 2 Rl
= |5 1.6Q SWo(w]) Q]

-~

1/2
1.58 [SWO (w]) Q fl ] .
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The rms response of a simple structure to a narrow-band random excitation of a known
rms level is equivalent to the response produced by sinusoidal excitation of the same
rms  level. If it is assumed that the peak~to-rms value of the stress time history is

3, the use of a sinusoidal excitation that has a peak amplitude equal to three times

the rms value of the random excitation should cause no failures that would not be
caused by the random excitation. Thus, the equivalent sinusoidal peak acceleration
can be expressed as:

2 1/2
9oeok 3 [1.58 swo (@) Qf, ]

i

1/2
4.75 [SW (w]) Qf] .
o

For an intact beam specimen at the onset of a random vibration test, fl = 81,
Q = 8, we have
1/2
gPeak = 12 [SWO (w]) ]

The following table, calculates the 9peak by the above equation, for various input

conditions. The inputs are in rms accelerations.
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TABLE 2

Calculations of Response Power Spectral Density Ses (w;)
. . W, 1
and Ratio of g /G . for Various 1
peak” Tult

Random Inputs.

,ZE: fe | RI\;\S 92 20 Swo(u]) . 1 PZ(;l:: eRlesp;nse Ggeok
) g /cps g /cps ' ult
2.0 4 0.02 0.141 2.05 17.1 0.17
3.0 9 0.045 0.212 4,61 25.7 0.26
4.0 16 $.08 0.283 8.20 34.3 0.34
6.0 36 0.18 0.415 18.45 50.2 0.50
8.0 64 0.32 0.565 32.80 68.4 0.68
10.0 100 0.50 0.707 52.25 85.6 0.85
12.0 144 0.72 0.847 73.80 102.6 1.02
TFor flat spectrum between 20 to 220 cps,
g2
R AU
)
tFor virgin specimen, f = 81 ¢ps, Q = 8.
* - . .
Gult = 100.3 gpeak from previous calculations.

Figure 19 shows a pair of typical input and response power spectral density curves
taken directly from test beam No. 84. The acceleration signals were recorded on
tapes simultaneously and were processed through an analyzer at a later date.

19



6.0

INSTRUMENTATION

The instrumentation used for the performance of the tests is listed below:

(n Bruel and Kjaer (B and K) Automatic Vibration Exciter Control, Model 1019.
(2 MB Electromagnetic Shaker, Model C25H, Type A, MB Mfg. Co.

(3) Ling Electromagnetic Shaker, Model 249. ’

(4) Electronic Frequency Counter, Hewlett and Packard Model 521 AR.

(5) Wyle 10KW Power Amplifier.

(6) Ling Power Amplifier, PP 120-150 .

(7) Honeywell Visicorders, Models 1508 and 1012.

(8) Oscilloscope, Tektronix Inc. Type 545A .

(9 Strain Gage Indicator, Strainsert Co. Model HW 1 .

(10) Endevco Accelerometers, Models 2213 ¢ and 2226 .

(1 Spectral Dynamics Corp. Constant Output Level Adapter, Model SD 11 .
(12) Ling Automatic Spectral Density Equalizer and Analyzer, Model 80 .
(13) Consolidated Electrodynamics Corp. Tape Recorder, Model GR 2800 .
(14) Spectral Dynamics Corp. Tracking Filters, Model SD 101 .

(15) Mosley Log Converters, Model 60D .

(16) Endevco Charge Amplifiers, Model 2711 .

(17) Electro Instrument Differential Amplifier, Model A 20B-2 .

In each of the dynamic tests of the scale concrete beams, four accelerometers were
employed. The first accelerometer was cemented to the shaker table and was used to
check that the shaker was within its force limitation. The second accelerometer was
cemented at the middle and on thz top surface of the beam. The third accelerometer
was cemented to the concrete specimen exactly at one of the pinned end supports. The
accelerometer signals of the second and third accelerometers were fed into a
differential amplifier to give the relative acceleration at midspan with respect to the
support. A fourth accelerometer was cemented close to the second accelerometer to
give the absolute acceleration at midspan. Typical experimental accelerations are
presented in Figure 12. In some tests, the accelerations from the third or the fourth
accelerometers were not recorded. It was noticed that for this accelerometer
arrangement, the accelerations from the first and third accelerometers were not
identical, and that the first accelerometer should not be used in place of the third
to give, together with the second accelerometer, the relative acceleration.

20



7.0 TEST RESULTS

The following tables summarize the results of various tests:

Table No.

3

Contents of Table

Static tests of group (1) specimens (commercially fabricated

roof slabs).

Dynamic tests of group (1) specimens, with sinusoidal input to the
shaker.

Static tests of group (2) specimens (scale reinforced concrete beams).

Dynamic tests of group (2) specimens, with sinusoidal input to the
sbaloor .

Dynamic tests of group (2) speciments, with random input to the
shaker.

Test data sheet evaluated from a typical test record such as
shown in Figure 13.

Figure 20 shows the plot of the stress-cycles (S-N) curve from data of Tables 1 and

2.

Figure 21 shows the S-N curve of the scale model beams under dynamic

sinusoidal loads. Figure 22 shows the same model beams under dynamic random
loads. Figure 23 shows the drops in resonance frequency and resonance dynamic
magnification factor, Q, as a function of cycles of vibration for a typical beam

under random excitation.
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TABLE 3

Static Tests of Group (1) Specimens (Commercially
Fabricated Roof Slabs)

RUN NO., P, FAILING LOAD, Ibs*
1 79
2 88
3 79
4 94
5 75
6 101
7 96

87.4 Average

* %2 lbs, Estimated error

Moment at Static Failure, M = = (L-aq)
max 4
= 402 in. - lb
Maximum Stress, ¢ = max
max I

= 730 psi (Bending) .
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TABLE 4

Dynamic Test of Group (1) Specimens, with Sinusoidal Input.

Excitation frequency was about 10% lower than the specimen
resonant frequency.

Run Freq. | Accel. %Modulus T TimeT No. of Cycles*
No. cps. g's of Rupture sec. at Rupture

27 100 27.5 65 120 12,000

32 90 23 67 6 540

33 80 19 70 130 10,400

34 80 17 43 80 53,400

35 80 22 81 2 160

36 80 20 74 230 23,000

38 80 20 74 235 23,400

39 80 26 96 0.5 40

Estimated error £ 5%

* Estimated error in counting total number of cycles
£ 25% below 1,000 cycles
+ 15% between 1,000 cycles and 10,000 cycles
£ 5% above 10,000 cycles

All specimens failed.
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TABLE 3

Static Tests of Group (2) Specimens (Scale Reinforced
Concrete Beams)

Beam No. P, Failing Load, lbs¥
97 620
67 580
50 560
11 600
40 545
88 525
68 660
100 575

585 |bs. (Average)

* . @10 |bs. Estimated error

. ‘e P
Moment at static failing load, Mmax v (L -aq)
- 33—5 (23.5 - 4)
= 2850 in. - 1b.
2.2
_ 4fL . .
Gulf EITE Mmcx , pinned-pinned beam.
2 2
_  A4xf x§3.5 « 2850
2.5x 107 x 0.426 x 386
= 1.53x1072 x §2 g, peak -
M c
Ultimate stress, o = —Max
ult |
2850 0.83 . .
0‘4)(26 = 5630 psi (Bending) .
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| TABLE 6

Dynamic Tests of Group (2) Specimens, with
Sinusoidal Input to the Shaker

Excitation Frequency was 5%to 10% Higher than the Specimen Resonance Frequency

: Beam %Load1L Total Cycles* Remarks
4 45 5.3 x 10° Broke at 3" from center
5 51 1.95x 10° Broke at 1.5" from center
6 60 1.51 x 10° Severely cracked at center
| 7 77 9.45 x 10 Severely crackedat center
: 8 85 2.94 x 104 Breke ot 1" from center
“ 9 81 2.32 x 104 Broke at 1/2" from center
i 10 73 9.30 x 103 Severely cracked
| 12 77 5.5x 104 Broke
: 13 81 7.23 x 104 Severely cracked, frequency down to 35~
‘ 14 73 9.8x 103 Severely cracked
? 15 68 1.15x 10° Severely cracked at center, 35~
16 77 6.5x 104 Broke
| 17 73 1.38x 107 Broke
18 68 4.37x 109 Severely cracked, frequency 35~
| 19 64 2.64x 10° Severely cracked, frequency 40~
| 20 68 2.44 x 10° Severely cracked, frequency 40 ~
21 73 1.029 x 109 Severely cracked at center
;\ 22 77 1.41 x 10° Cracked 4" from center, frequency 30~
23 81 1.168 x 10° Cracked at center, frequency 30~
‘ 24 68 8.01 x 109 Cracked at center, frequency 30~
| 25 64 1.98 x 10° Cracked 4.5" off center, frequency 25~
26 85 1.95 x 104 Broke
27 73 3.43 x ]05 Broke
28 60 2.18 x ]05 Broke 8.0" from center, Cracked at center
, 29 64 2.25 x 105 Severely cracked at center
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TABLE 6 (Continued)

Beam | %Load? Total Cycles™* Remarks

30 89 1.51 x ]05 Severely cracked at center

31 81 2.54 x 105 Severely cracked at center

32 64 7.69 x 105 Severely cracked at center, frequency 30~
33 60 4.95x 10° Frequency 38~

34 85 2.16 x 104 Severely cracked at center

35 81 8.55 x ]04 Severely cracked at center

36 64 2.90 x 105 Broke 1" from center

37 60 3.68 x 10° Severely cracked 1/2" from center
38 55 3.86 x ]05 Severely cracked at center

39 51 4.12 x 105 Severely cracked 1/2" from center
40 55 3.29 x 105 Broke 1" from center

41 116 8.25 x 103 Broke 1/2" from center

42 99 1.09 x 104 Broke 2" from center

49 99 8.14 x 103 Severely cracked at center

54 64 9.71 x ]04 Severely cracked at center

55 64 4.54 x ]05 Severely cracked at center

56 58 4.49 x 105_ Broke 2" from center

57 58 3.24 x ]05 Broke 1/2" from center

58 52 6.57 x 105 Broke 1" from center

59 52 3.64 x ]05 Broke in center

60 52 1.86 x 10° Broke 1/2" from center

tEstimated error + 5%

* Estimated error in counting total number of cycles

+
+
+
+

25% below 10,000 cycles

15% between 10,000 and 100,000 cycles
10% between 100,000 and 1,000,000 cycles

5% above 1,000,900 cycles
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TABLE 7

Dynamic Tests of Group (2) Specimen, with Random Input

(20-220 Cycles, Flat) to the Shaker

¢
Beam Input t gpeak Approx. No. Comments
No. g rms Gult of Cycles *
65 2 0.17 1,070,000 Broke
66 10.26 2,396,000 Did not fail
69 6 0.50 45,000 Broke
70 4.5 0.39 427,000 Broke
71 2.5 0.25 6,157,000 Did not fail
72 2.5 0.21 1,197,000 Bioke
73 10 0.85 15,000 Broke
74 10 0.85 5,000 Broke
75 8 0.68 12,000 Broke
76 8 0.68 22,000 Broke
77 6 0.50 21,000 Broke
78 6 0.50 42,000 Broke
79 4 0.34 532,000 Broke
80 4 0.34 367,000 Broke
81 10 0.85 7,000 Broke
82 8 0.68 24,000 Broke
83 6 0.50 44,000 Broke
84 4 0.34 300,000 Broke
85 2 0.17 1,471,000 Did not fail
86 2 0.17 1,646,000 Did not fail
87 12 1.02 4,000 Broke

¥ Estimated error + 20%

t Estimated error +

*Estimated error in counting total number of cycles:

10%

+ 50% below 10,000 cycles

H W W

25% between 10,000 and 100,000 cycles
10% between 100,000 and 1,000,000 cycles
5% above 1,000,000 cycles
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Test Data Sheet Evaluated from a Typical Test Record
Beam No. 84 Under Random Vibration

TABLE 8

2
4 g rms Input ; Swo(wl) 0.08 g° /cps.
SW] (w])* SW](U]) -
Time A'Time 2/’ -~ | R = W Q = w3 F* Total Cycles
Minutes | 9 /¢Ps ° cps

1840 Start 100 6,000
1841 ] 5.2 65 6.4 86 16,300
1843 2 6.3 79 7.0 82 36,000
1847 4 7.5 94 7.7 80 40,800
1851 4 6.0 75 6.8 80 45,600
1855 4 5.0 62.5 6.2 76 54,600
1905 10 5.0 62.5 6.2 74 98,600
1910 5 5.2 65 6.4 76 121,400
1920 10 4.8 60 6.1 74 165,600
1925 5 5.5 69 6.5 76 188, 400
1940 15 4.0 50 5.6 72 253,400
1950 10 4.0 50 5.6 72 297,400
1953 ] 2.0 25 3.5 60 300, 400
1953 End Beam Broke

*Estimated Average Value during Time Interval.
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8.0 CONCLUSIONS

The following conclusions are derived from the observation of the experimental tests.
They are listed arbitrarily with no sequence of importance.

(M

(3)

(4)

The stress-cycle, S-N, curves of the reinforced concrete for the dynamic tests
differ quite markedly from that of the zero-to-maximum repeated loading. The
differences are:

(i) Apparently no endurance limit canbe determined up to 106 cycles.

(i) The dynamic ultimate strength, from the sinusoidal dynamic test, is
at least 20% higher than the static ultimate strength. (See Figure 21)
Afigure of 30 to 40 percent higher, as suggested by some
investigators,” is reasonabie.

(iii)  The S=N curves of the dynamic tests are shifted to the right with a
much steeper negative slope than that of the slow, repeated zero-to-
maximum [oading test.

The concrete beams in both groups (1) and (2) were found to be not quite
uniform in their physical properties. This was particularly true of the beams
in group (1) which were signified by the non-uniform static failing loads

in the static test. Initial cracks could be found in some of these beams. Some
test data, therefore, was discarded when the beams tested were believed to

be abnormal .

The use of strain gages for strain measurement of the beams under dynamic
tests was not successful due to surface cracks.

It was observed, particularly from the random test records, that the dynamic
magnification factor, Q, of the reinforced concrete beams, changed
continuously as the total number of vibration cycles increased. In some cases,
the value of Q dropped from the initial value of 8 or 9 to 2 or 3 at
the end of a test before the beam failed. Special tests for the Q measure-
ment were performed by low level discrete frequency scans at intervals during
a few fatigue tests. Typical results of these tests are presented in Figures 17
and 18. The lowering of the Q values signified the increase of the internal
damping of the test specimen. The variation of Q in the random tests was
summarized in Figures 24 through 26.

* See No. 21 in Bibliography for example.
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(3)

(6)

(7)

@)

The resonant frequency of the beam specimens lowered continuously as the
load cycles increased. This lowering could be due to :

(i) Readjustment of end fixity at the beginning of a test run.
(i) The gradual increase of damping.

(ii1)  Micro and/or macro cracks result in change of bending stiffeners,
E I,of the test specimen.

The control of the stress level, experienced by the specimen under dynamic
test, by means of the relative acceleration method, proved to be reliable and
made this experiment feasible. By this method, the test specimen could
actually be vibrated at the resonant frequency in the sinusoidal test experiment.
However, because of the frequency sensitivity at resonance, the continuous
decrease of resonant frequency, change in damping of the beam, and the non-
linear vibration behavior of the specimen, off-resonant frequency excitation
was employed. A vibration frequency of 10 to 15 percent below the
specimen's fundamental frequency was used for the weaker group (1)
specimen, and 5 to 10 percent higher frequency values were employed for
the stronger group (2) specimen. The relative acceleration was noted to be
much increased in the higher-than-resonant frequency test as the middle of
the beam and the supports were vibrated out-of-phase. This off-resonance
test should be noted to have no significant effect on the stress calculation.
Figure B1 of Appendix B shows that the mode shape is essentially a half-
sine wave, as in the case of resonance, even when the ratio of excitation
frequency to the resonance frequency, u/w] , isaslowas 0.5, or ashigh
as 2.0,

The accuracy in counting the vibration cycles of the test specimens became
very difficult in the very short test runs with very high loads. These difficulties
are illustrated by Figure 11 where a test beam failed before a very high

load of constant acceleration could be maintained. The cycles accuracy
becomes much improved for lower load and long duration tests as shown in

Figures 9, 10, and 12.

The stress-cycle (5-N) curves of the sinusoidal tests of the specimens in groups
(1) and (2) are truly the commonly defined S-N curves, since the stress of each
beam specimen was able to be maintained to a desired level throughout the entire
duration of a test run, in spite of any change of the circumstance that might
arrive from concrete cracking. However, it should be emphasized here that the
stress-cycle curve of the random test is not truly a S=N curve in the sense that
the stress changed continuously due to the rapid decrease of the dynamic magni-
fication factor, Q, as test went on. In this latter case, the fatigue factor is
defined only when the specimen is intact, uncracked, and experienced no
severe vibration before.
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9.0

COMMENTS

Despite many difficulties encountered in this experimental study of the dynamic

fatigue properties of reinforced concrete, the test method appeared to be feasible and
yielded meaningful data. The test specimens, specially manufactured for this experiment,
were carefully scaled versions of a full size beam structure. The dynamic fatigue
properties of the scaled specimens could therefore, be used for further structural design.
The size factor was not investigated. However, using the knowledge gained from the
steel fatigue problems, the author feels that a size factor of one could be safely used

in evaluating larger concrete structures from this model beam study. Since the smaller
size specimens are generally weaker due to the fact that they are more easily influenced
by local stress concentration, the application of the test data taken from the smaller
model beams to the larger structure is on the conservative side.

The accuracy in estimating the total cycles of vibration at high dynamic loads, in both
sinusoidal and random input tests, was quite low. The test specimens might break very
rapidly, a matter of a few seconds to a few minutes. It also took time to bring the
acceleraticn up to a desired level, and time to record data. However, this accuracy
improved significantly for the long duration and low dynamic load tests.

The desired acceleration level was controlled manually and was subject to human
error and limitation. No automatic feedback control was employed, so that the shaker
would not be greatly overloaded and damaged at the moment the test beam failed.

The strength of the concrete varies significantly from one sample to another, from one
batch of mix to another, from one source of material supply to another, and for many other
reasons. The experimental data of this report could be influenced by the material
selection and specia! attention in fabrication. Similar fests should be performed for a
better understanding of concrete under dynamic loads, on larger scale structure, with
various qualities of aggregates and cement, various mix ratio, various water content,

and with and without additive. Nevertheless, the results obtained in this experiment
provide a useful comparison of random and sinusoidal fatigue of concrete and extensive

data on fatigue due to repeated single-direction loads.

Appendix C presents four examples to illustrate the fatigue life estimation of concrete
beams using data charts compiled from this experimental study. These examples are
intended for beams subjected to random vibration with their end conditions either pinned
or clamped. The usefulness of these data charts can be further extended to the plate .
problems, such as concrete structural walls, by using the plate theories which are avail-

able in many standard text books.
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STRAIN GAGE INOKCATOR

Figure 3. Simply Supported Concrete Beam under Static Test.
Test Configuration 1.
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Figure 4:  Simply Supported Concrete Beam Under Static Test.
Test Configuration 2.

37




Figure 5. Concrete Beam Showing Supports in Detail and Typical
Failure Mode of a Test Beam.
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e

Figure 6. Equipment used in Dynamic Testing of a Concrete Beam.
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Figure 7:  Dynamic Testing of a Concrete Beam Mounted on a MB C-25 HH Vibrator
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Figure 9. Run No. 34. Portion of a Typical Record of a Group (1)
Specimen under Dynamic Sinusoidal Test.
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Run No. 38. Portion of a Typical Record c¢f a Group (1)
Specimen under Dynamic Sinusoidal Test.
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Figure 11. Run No. 39. A Typical Complete Record of a Group (1)
Specimen under Dynamic Sinusoidal Test of very Short
Duration.
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BEAM No 16

RESONANCE FREQ. 74 CPS
EXCITATION FREQ. 80 CPS,
CHART SPEED 0.1 INCH /SEC. :
SCALE: 50gPk /INCH. =

( 6/6,/65

Figure 12. Beam No. 16. Portion of a Typical Record of a Group (2)
Specimen under Dynamic Sinusoidal Test.
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Figure 17. Low Level Scan of Run No. 34. After 5600 Cycles.
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Figure 18. Low Level Scan Run No. 34 After 24,000 Cycles.
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APPENDIX A

Calculations of Bending Moment, Area Moment of Inertia,

and Fundamental Natural Frequency of the
Scaled, Tensile Reinforced

Concrete Beams

A. Double Reinforced Concrete

Force Diagram

area of compressive steel

area of compressive concrete

Strain Diagram

€S=f S/ES

depth of member from compression face to the centroid of the

distance from concrete face to centroid of steel

Young's modulus of elasticity of steel

Young's modulus of elasticity of concrete

Dimension
R
vl XA e, eh
© _L P-4 ‘. A.b .,
‘ | L0, 00
! O laaec: .. .0 P
T—s |
A = area of tensile steel
s
A' =
s
A =
c
b = width of beam
d =
tensile steel
d' =
d* = actual depth of beam
E =
s
E =
c
f =
s

stress in longitudinal tensile steel



f! = stress in longitudinal compressive steel
f = stress in longitudinal compressive concrete outer fiber

k = distance from compression face to the computed position of the
neutral axis relative to depth d

n = E/E = 30x10%2x10° = 15
M = bending moment

P = A/b,

p' = A's/bd

T = total tension force in steel

Cs = total compressicn force in steel

Cc = total compression force in concrete

€ = tensile strain of steel

es' = compressive strain of steel

€ = compressive strain of concrete

Force Relationship:

T = Asfs = FS pbd (n
C = C +C = AF 4+ 1% kbd
s c s s 2 ¢
_ - 1
= fsp bd + 5 fckbd . (2
Taking I F . 0, weget T =C, or
horiz.
- 1
fsp = fs p' + 5 fc k. (3)
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Strains Relationship:

€
s
4
o
X
Yy ©
T

B N
S 4 | s
4
€
c
f /E nf
Sigin in Quter Compressive Concrete Fiber _ ¢’ ¢ c _ kd _k
Strain in Tensile Steel fs/'Es - fs T odakd T 1 -k
_ . (1-k)
or fS = n-—rf (4)
1/ ]
Strain in Compressive Steel _ fs’ Es _ _Fs_ _ kd-d
Strain in Tensile Steel Fs/Es - FS d-kd
: . (kd -d"
or fs = fs d(1K) (5A)
_ 00 (d-d)
- TR c d(1 - k)
-, kd-d :
= n T fc (58B)

Substituting equations (4) and (5B) into (3), we get

(14 , ., kd-d 1
P fc - " Td fc ) Fck
np(1-k) = nple- ) + 3 K2

, . d' 1.2
(np')Yk = (np' 3) + 5k

(np) - (np)k
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d' . ]
(np) + np' (E) - (np + np')k -—2-k2 =0

k2+2(np+np')k -~ 2np - 2np' (=) = 0 - (6)

In general, p = p', equation (6) becomes:

2+ (4npk - 20p() = 0
) -4np # \/(4np) + 8np (3 )
< = J@np)? + (20p) (@) - (20p) - @

Note that equation (7) gives the position of the neutral axis. Toking the moment
about the centroid of tensile steel, we have

1

M=-§fkbd(d-—) +f'A' (d -d")
1 k kd - d' . .
—7fckbd-d(l-§) n—k—d-—Fc -p'bd-.(d-d")
kd k kd -d' .
fcbd[—z(]——a-) + n —T(d—'p (d-d)]
£ = M
c bd[kd(3-k)+ n(kd—d')p'(d-d')]
) kd
6kM
= 5 . (8)
b(kd)~ (3-k) + ébn(kd-d')p'(d-d")
Thus . n (1 = k) f
$ k c
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fl

6n(l -k) M

5 ©
b(kd)?(3-K) + 6bn (kd -d) p' (d - d"
kd - d
b(kd)2 (3 -k + 6bn(kd-d")p'(d-d)
6 n (kd - d") M 00

bd(kd2 @3-k + 6bdn (kd-d)p' (d-d"

If fs is known from an experimental determination, a corresponding bending moment

can be computed.

M

f [b (kd)>(3-k) + 6bn(kd-d")p'(d- d')]

YO ()

For Model Concrete Beams :

f

S

dl
d*

67.9 ksi (steel wires used in model concrete beam)

0.25 in.
1.51in.
1.25in.
Es/Ec

p' = 0.72 = 7.2x10°

]

15
3

3.5in.
1.2
0.108

0.216
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@2np)2 = 0.0466

(2np) (d¥/d) 0.259

J@p? + () (@) -2np

k =
= /0.0466 + 0.259 - 0.216 =~/0.3056 - 0.216
= 0.553 - 0.216 = 0.337

d - 0337 « 1.25 = 0.42] in.

(kd)? = 0.177

3-k) = 3-0.337 = 2.663

(kd-d) = 0.421 - 0.25 = 0.171

d-d) = 1.25-0.25 = 1.0

(1-k) = 1-0.337 = 0.663

Using equation (11), we get,

Fs[b(kd)2 (3-k) + 6bn(kd-d")p'(d -d')]
6n (1 -k)

M =

679 108 |3.5(0.177) (2.663) + 6x3.5x15(0.171) 7.2 103 ( o)
&x 15 (0.663)

67.9 x 10° [1.652 + 388 x 10'3]

90 (0.663)

67.9 x 103 [2.040] :

59.7

= 2.32 x 103
= 232 in. - Ib.
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From the actual static loading of beam, the average failing load, P, was 583 Ibs.
Therefore, the actual maximum bending moment is

_ ] _ 1 o -1
Mmox = 7 P(L-aq) I P (23.5 - 4) ) (19.5) P
= 4.9 P
= 4.9 x 583 = 2850 in. - 1b.

The theoretical moment based on static ultimate strength of steel from axial loading
conditions is fairly close to that from actual testing. The small discrepancy probably
derives from the sources such us piastic deformation and big deflection of beam specimen
at loads causing stresses greater than the material yield point.
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B. The Area Moment of lnertia

N.A. 0.?3" 3.5"

The area moment of inertia of the scale beam is:

3
bh 2
I = E[_l2 + dA]

r 3 2
T e +(°é42) (3.5 x 0.42)J "

-

[0 + (np' bd) (0.17)2] ; [0+(n o' bd) (0.83)2]

0.0216 + 0.0646 + (15x 7.2 x 103 x 3.5 x 1.25)(0.17% x 0.832)

0.0216 + 0.0646 + 0.473 x 0.719

0.426 in.4
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C.  Fundomental Natural Frequency:
The scale concrete beam possesses the following engineering constants:

Length: 23.5 inches between supports

Width: 3.5 inches

Depth: 1.5 inches

Young's Modulus of elasticity, E = 2.5x 106 psi
Area moment of inertia, I = 0.426 ind

Density: 150 Ib./cu.ft.

Weight per unit length, u = 0.503 Ib./in.

For pinned-pinned end fixity, the fundamental natural frequency is:

2
f = -]— Ll _S_E.L
1 z= \1 "
= 2 \[386 x 2.5 x 10° x 0.426
= \2)\z3 0.503
= 81.4 cps .
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APPENDIX B

Vibration of a Beam on Moving Supports

The equation of motion of a beam wi th moving supports can be expressed in terms of the

W absolute motion, Y (x,t) of the beam or in
_ U terms of the sum of the support motion U (t) and
I the relative deflection, W (x, t) of the beam.
———r T T TTTao Thus, if the bending stiffnessis E |, the
| | mass per unit length is p A, and Y (x,t) =
| o X U(t) + W(x,t), we can write the equation of
a L motion as
4 2
Bl ¢+ pA 2 = 0 1
9 x dt
or as s )
AR S Aa(U2+W)—O' 2)
9 x at
However,
'y & : ‘u
2 = , since i 0
9 x 0 x 9 x

if the support motion U is the same at each end.

Thus, equation 2) becomes

atw 2w 32 u
4t PA T = -eA T
0 x ot ot

El

3)

Two distinctly different forms of the solution to the problem are obtained depending on
whether equation 1) or equation 3) isused. Briefly, use of equation 1) yields a closed
form solution without expansion by the normal modes. This is due to the fact that two of the
boundary conditions for this formulation specify non-zero conditions at the ends. The char-
acteristic equations safisfying the boundary conditions are therefore not all homogeneous.
Thus, the usual method of defining normal mode frequencies by setting the determinant of
these equations equal to zero can not be used. With equation 3), on the other hand, the
solution is carried out in the usual manner for forced vibration and results in a series solution
expressing the motion as the net summation of vibration in the normal modes.
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Although either method will produce equivalent results, the closed solution method has an
advantage for simple computer calculation of the beam motion at any frequency.

Therefore, using equation 1), we assume the deflection Y takes the form:

Y (x,) = Y(x) sin wt
where w is the frequency of excitation at the supports.

"4\11,.
Thus ——Xr . = yo () sin wi,

and gy . qu(x) sin wt .
3t

Substituting the above quantities into 1), we get

Y'"'" (x) sin wt - pA u2Y(x) sin wt = 0

El
$181 4 —_
or Y'""'(x) - K Y(x) =0 4)
where K4 = —%A— w2
2
4 w4 w
or K™ = ( ) ) 5 5)
®
1
2 n.4 _EI . .
where wy = (—L-) W' the fundamental frequency of o pinned—-pinned beam.

The general solution of 4) is
Y (x) = Acosh Kx + Bsinh Kx + Ccos Kx + Dsin Kx

where A, B, C and D are arbitrary constants.
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Applying the boundary conditions:

Y (0) YL = U
Y'©0) = Y'(L) = O,

we get, after a few mathematical manipulations,

_ - U
A = C = 2
U KL
B = - 5 tanh 5
D =—;-J- tan K2L
Thus,
Y (x) ="Léj-[cosh K x - tanh %‘"— sinh Kx + cos Kx + fon-l%-sin Kx] . 6)
For KL = nw, n = 1,3, 5, the last term goes to infinity. This corresponds to

the odd-order resonant frequencies of the simply supported beam since, from equation 5)

.2 Bl fnw\ EI
w = K° =— = (2T} ==
n pA (L pA

Note that this shows that even-order modes are not excited by this symmetrical motion.

To introduce damping, we let E become complex with a loss tangent n . This will
change K to a complex number which, for small n becomes:

*
K = K - j —} K
where K = undamped wave number
n = thelossfactor = 1/Q.

Then equation 6) becomes

Y (x) =-U7|:cosh (1 - i-‘-})Kx - tanh (1 -ig-)%sinh(l-i-})m

+ cos (I -i—E—)Kx + tan (] -i-%)-Kz—L sin (l-ia—)kx] ,
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or expanding these functions into their real and imaginary terms,

Y(x) =a+ jb 7q)

where a =% [cosh K x cos (—2— Kx) + cos K x cosh (—3— Kx)

+ sin KL sin K x cosh (%Kx)
cos KL + cosh (%— KL)

sinh (—} KL)

: cos K x sinh (-2— Kx)
cos KL +cosh(—}KL) vV /

- sinh KL v sinh K x cos (-% Kx)
cosh KL + cos (—} KL )

sin (-3- KL )

+ cosh K x sin(—}- Kx)] 7b)
cosh KL +cos(-'4l KL)
b =—;J-l:sin K x sinh (-04-Kx) - sinh K x sin (—%Kx)
sinh (& KL )
- 4 sin K x cosh (—} Kx)
cos KL +cosh(—r]4-KL)
- __sin KL cos K x sinh (—2— Kx)
cos KL + cosh (1} KL)
sin (- KL)
+ 4 sinh K x cos (—2— Kx)
cosh KL + cos(%KL)
+ sinh KL cosh K x sin (%—K x>] 7c)
cosh KL + cos (—}KL)
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The magnitude of the absolute motion is

1/2
Y ()] = (o + b2) . 7d)

The magnitude of the relative motion is
1/2
lW(x)l-f[a-U)z + bz] . 8)

Equation 8) has been evaluated for n = 0.01 and 0.125 loss factors typical for a lightly

- damned metal beam and a reinforced concrete bean, respectively. The mode shape, nor-

malized to unit maximum deflection, is shown in Figuie B! for ceveral frequencies. The

frequency response of the maximum absolute deflection and phase at the middle of the beam
relative to the applied motion is shown in Figure B2.

A simpler form of equation 7a) through 7d), to define the approximate response at the
middle of the beam at resonance, is obtained by using only the last term in equation 6).
With a complex molulus in the tan KL term only, the resonant response at x = L/2 is
given approximately by

u sinh L KL sin KL
y ~ S _ 4 2
max 2 cos KL + cosh % KL
For low damping and KL = mw, m=1, 3, 5 etc., a series expansion reduces this to a

simpler approximation which is the same as the maximum relative displacement found by a
normal mode solution

(n-1)/2
Y ~ U I:- i (4/n nn):l [—]] , n=1,3,5, etc. 9)

max
The maximum response predicted by equation 9) is also shown on Figure B2.

The variation in stress along the beam is determined exactly by taking the second derivative
of the mode shape in equation 7a) through 7d). The bending stress is then:

¢ = EC Y'"(x)
where C = distance from centroidal axis to outer most "fiber”
E = modulus of elasticity.

The second derivative, Y'', of equation 7a) through 7d) is not shown here for the sake of
brevity. Numerical values were determined however by the computer program mentioned
earlier. The results of this analysis was applied to the vibration fatigue tests of pinned-
pinned concrete beam specimens.
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Y (x,t)/U(t)

Absolute Deflection,

100

0.1

180°
I

90°
||
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Phase

l

o
o
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00

® Calculated Value From Equation 9

1.0 10.0
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Phase Angle Between Absolute
Motion at Mid Span of Beam
and the Moving Supports.

l
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Figure B2. Absolute Deflection Y(x,t) ot Mid Span of a Simply Supported Beam (X/L =0.5)
With Moving Supports and Loss Factor n .
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APPENDIX C

Ilustrations of Fatigue Failure Estimation of Reinforced Concrete
Under Random Loading

Example 1

Estimate the fatigue life of a simply supported reinforced concrete beam, 12 in. x
6 in. x 15 ft., subjected to random acoustic normal excitation. The maximum
spectral density of acceleration response is measured at midspan to be 8 g2/cps.
Ultimate strength of the beam is assumed to be 4000 psi, and Q = 8.

Calculations:

6 12x63

_ 8 2
El = 2.5x10" x T2

= 5.4 x10" Ib. in.

p = 0.096 Ib./in.3 = 0.096 x 12 x 6 = 6.911b./in.

2

] 2r \ L m
where @, = frequency parameter

= w for simply supported beam .

2 g
¢ =J_(14 /%6x54xm
1 2« \18 6.91

= 8.4cps.
4f 12
G, = —— o
ult Ecg ult
2 2
- Ax8.4 x 180 . 4p00 = 12.6 g

2.5x 108 x 3 x 386 peak
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—|m 1
% ms - [-2- SW(Q]) Q

_[= 8.4

- [7 (8) 3 ]

= 3.64 g
Assume that gpeok = 3xg o
gpeck = 3x3.64=10.9 g
ggeok 10.9

= - = 0.865

12.

ult

From Figure 22, the fatigue life of the beam is between 1,200 to 20,000 cycles;
or 190 to 3,180 seconds, assuming that the resonance frequency drops to half of
its initial value at time of specimen failure.

Example 2

Same beam as in Example 1 excepf clcmped at both ends. Maximum acceleration
spectral density at midspan is 1.5 g /cps Again, ol = 4000 psi, and Q =8.

From statics we know that the bending moment at the ends is twice that at the middle
of the beam. We, therefore, assume that the maximum acceleration spectral density to

be 6 gz/cps .

2
f = L(El.) gEl
1 2r\ L
p
where a, = 4.730 for clamped-clamped beam
f = 19.1 cps .
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The fundamental beam mode shape can be expressed as:

yl, t) = Y, (1-cos ZEX ) eim

Differentiating with time twice we get,

2
a_z(XL,f)_: v, 1) =_02y (]-cos 2':rx) it
dt
= - 0w yk, )
or
)’(xr i') = - ]—2 .)}(xl f)
w

Again, differentiating twice with spanwise coordinate x, we have:

2
_a__y(x—,f) — (1)2 oiwt 2ux
3 x2 L) Y T
Let x = Oor L, and wt = multiple of 2.
2% yix, 1 .
— 2 = 4T) e
d x max
. 2
= 4 (T: ) v r)mclx
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The maximum bending moment can be shown as:

2
Moo= e |2kt

max 3 %2

Ec m ax
Finally, we get,
_ )2
G = o
ult ult
Ecg
2

2
~(l9.1) (180) « 4000

2.5x 106 x 3 x 386

The response in terms of rms acceleration is 4.74 Irms” and gpeak is14.2 g.

Thus, we have

g
Ggeok _ 14.2  _ 0.87 .
ol 16.35
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From Figure 22, the fatigue life of the beam is between 1,000 to 18,000 cycles;
or 74 to 1330 seconds, if we assume that the resonance frequency drops to half
of its initial value at time of specimen failure.

Example 3

Same beam as Example 1 except the spectral density of acceleration response is
recordedas 1 g /cps at time five minutes after the onset of the random acoustic
excitation test. The dynamic magnification factor, Q, for a virgin specimen is assumed
to be 8. Resonance frequency is 7.6 cps at time of recording.

The theoretical natural frequency of the virgin concrete beam specimen, from Example 1,
is cuiculated as 8 4 eps. This frequency drops to a lower value due to the change of
bending stiffeners, El,which was a direct result of some macro- or micre - cracks in the
concrete subjected to severe vibration. A frequency average of 8.0 cps is assumed for
the first five minute period. The number of load cycles is:

N = 8.0 x5x 60 = 2,400 cycles.
g
Now, we assume that at the onset of test, the ratio __GEEQ'S_ equals 0.35. From
ult

Figure 26, Q is approximately 5.8 at 2,400 cycles.

Since the excitation force is the same at onset of test and at time five minutes later,
we have, from page 17,

- -

T S, w,) T — _
1.6 Q2 Onset Wo L 1.6 Q2 5 Minutes
- J of test
or

— . 2

_ Qonsef of test
(w ) - SW (Q])
I | Onset 3 minutes ! 5 Minutes
of test .

i
N
O
« oo
00
N,
—
—
Sma”
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At the onset of test, we have,

f
= x L
gpectk 3 X{Z SW](UI) Q:‘
4 1/2
= 3 x[% 1.9 22 J
- 5.2
From Example 1, we have Gulf = 12.6, thus
Speak  _ 5.3 _ 44,
Gulf 12.6 e

g )
The initial assumption, _G& = 0.35, isnot too far off.
ult

9
From Figure 22, for Epe_alf_ = .42, the life cycles are approximately 20,000
ult

to 300,000; or, 3,180 to 47,700 seconds assuming that the resonance frequepcy

drops to half if its initial value at time of specimen failure.

Example 4

A concrete beam, similar in dimensions and support conditions to that of Example 1, is
reinforced by structural steel which runs parallel to the beamwise axis and is imbedded
at the center of the concrete. At the beginning of a random vibration test, the response

at the middle of the beam is 0.1 gz/cps. Assume Sult, tension 400 psi,
= 5000 psi, and Q = 8.

o .
ult, compression
The ultimate strength of the beams in the previous three examples was 4000 psi (tensile

or compression, whichever was lower). This high strength indicated that the beams had
their top and bottom surfa ces reinforced by tensile steel.

81



In this final example, the beams may have the same amount of reinforcement as those
in the previous examples. However, since the reinforcing steel is in the plane of the
neutral axis of the beam, the tensile strength of the outermost fiber of the beam is
not benefited from the steel. We shall, therefore, analyze this last beam, based only
on its ultimate tensile strength. G [ can be shown tobe 1.26¢g .

ult peak

F] isstill 8.4 cps

g is 0.406 g, ond gpeok is 1.22g.

rms

The ratio 95k /GUH is 0.97.
The estimated life of the beam is between 400 to 6000 cycles.

The purpose of this example is clear. The position of inhe reinforcement is important
when the specimen is subject ed to a complex reverse loading process, such as
sinusoidal or random vibrations. The percentage of reinforcement becomes of
secondary importance. The beam in this last example would probably be severely
cracked, but not necessarily completely broken, after the estimated vibration cycles.
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